Information retention summary statistics

info_retention_stats(scaling_result, class_name_field)

Arguments

scaling_result

data frame with scaling results returned by function mdgp_scale

class_name_field

column name in the scaling results data frame that contains the scaled class names

Value

A list with two data frames. First data frame contains class-specific cell class name (class_name), class frequencies (freq), class raster id (class_id), class proportion (prop), information retention mean (inf_retention_mn) and standard deviations (inf_retention_sd). The second data frame contains the mean (mean) and standard deviation (sd) for the scaled landscape across all classes.

Examples

# load categorical raster
r <- terra::rast(system.file("extdata/nlm_mid_geom_r3_sa0.tif", package = "landscapeScaling"))

# subset the raster to the lower 300 by 300 pixels
r_sub <- terra::crop(r,terra::ext(0,300,0,300))

# generate relative abundance for the scaled grid
rel_abund <- relative_abundance_scaled_grid(r_sub,class_field='cover',scale_factor=15)

head(rel_abund)
#>    x y          A        B        C
#> 1  0 0  4.8888889 38.22222 56.88889
#> 2 15 0 10.2222222 38.66667 51.11111
#> 3 30 0 20.0000000 42.66667 37.33333
#> 4 45 0 24.8888889 40.44444 34.66667
#> 5 60 0  0.8888889 28.00000 71.11111
#> 6 75 0 17.7777778 37.33333 44.88889

# classify relative abundance samples to multi-dimensional grid points
mdgp_result <- mdgp_scale(rel_abund,parts=3,rpr_threshold=10,monotypic_threshold=90)
#> [1] "number of cells: 400"
#> [1] "number of grid points: 10"
#> [1] "number of grid points remaining: 5"

head(mdgp_result)
#>   cls      A      B      C    x_y prc_inf_agr class_name
#> 1  10  0.000  8.444 91.556  285_0      91.556       C100
#> 2  10  0.000  9.333 90.667 195_30      90.667       C100
#> 3  10  0.444 12.444 87.111 60_285      87.111       C100
#> 4   9  4.889 38.222 56.889    0_0      90.222  C67_x_B33
#> 5   9 10.222 38.667 51.111   15_0      84.444  C67_x_B33
#> 6   9 10.667 42.667 46.667  225_0      80.000  C67_x_B33

# generate class-specific and landscape scale information retention statistics
infRetStats <- info_retention_stats(mdgp_result,'class_name')

print(infRetStats)
#> [[1]]
#>        class_name freq class_id   prop inf_retention_mn inf_retention_sd
#> 1 A33_x_B33_x_C33  165        1 0.4125           84.129            3.814
#> 2       A67_x_B33  122        2 0.3050           87.417            6.519
#> 3       B67_x_A33   29        3 0.0725           82.038            2.214
#> 4            C100    3        4 0.0075           89.778            2.352
#> 5       C67_x_B33   81        5 0.2025           88.093            5.132
#> 
#> [[2]]
#>                                   mean    sd
#> information_retention_landscape 85.826 5.356
#>